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Abstract

Most betting market models employ static frameworks that condition decisions on final

odds. Using a unique dataset of interim odds from Japanese horse racing, this study exam-

ines the validity of such static analyses by asking whether there is a systematic relationship

between expected returns and the trajectory of odds. We find that returns are negatively

related to last-minute changes in odds, and that these late movements attenuate the favorite-

longshot bias by weakening the correlation between final odds and returns. These patterns

suggest that informed bettors place wagers at the final stage based on private signals, leaving

surprises in final odds.
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1 Introduction

Parimutuel betting markets offer a well-defined empirical setting for analyzing equilibrium behavior

under uncertainty. One of the most enduring puzzles in these markets is the favorite-longshot bias
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(FLB), first documented by Griffith (1949). The FLB refers to the systematic tendency for wagers

on longshots—horses with high odds and low perceived winning probabilities—to generate lower

average returns than wagers on favorites—horses with low odds and high perceived chances of

success. This pattern stands in sharp contrast to conventional notions of market efficiency (Thaler

and Ziemba 1988). A large body of research has attempted to account for this anomaly through

equilibrium models that link final odds to win probabilities (e.g., Weitzman 1965, Ali 1977, Hurley

and McDonough 1995, Jullien and Salanié 2000, Bradley 2003, Snowberg and Wolfers 2010).1 More

recent studies, including Gandhi and Serrano-Padial (2015) and Chiappori, Salanié, Salanié and

Gandhi (2019), develop models with heterogeneous bettors and use structural estimation to recover

risk preferences, probability perceptions, and subjective beliefs from the relationship between final

odds and realized outcomes.

This study is motivated by the central question whether the static relationship between final

odds and realized outcomes is sufficient for identifying bettors’ risk preferences and beliefs. While

existing studies have substantially advanced our understanding of pricing in betting markets, they

largely rely on static frameworks in which bettors are assumed to condition their choices on final

odds. However, this assumption is questionable as parimutuel betting markets, unlike financial

markets where limit orders are feasible, do not allow bettors to act contingent on final odds. In

such markets, strategic delays by informed bettors in placing their wagers can prevent efficient

information aggregation and thereby generate the FLB, independently of bettors’ risk preferences

or probability perceptions (Ottaviani and Sørensen 2009).

To address our research question, we empirically test the validity of inferences that rest on the

assumption that final odds serve as sufficient statistics for bettors’ decisions. More specifically,

we analyze the entire evolution of odds throughout the betting period to assess whether outcomes

depend not only on final odds but also on the trajectory by which those odds are reached. If final

odds are truly sufficient statistics, then horses with identical final odds should, on average, yield

identical expected returns regardless of the path of odds movements. Any systematic deviation

from this benchmark would indicate that odds dynamics contain predictive information beyond

what final odds alone can capture.

For our analysis, we employ a comprehensive dataset from the Japan Racing Association (JRA)

that covers all centrally administered races from 2004 to 2023. A distinctive feature of this dataset

is the availability of high-frequency interim odds, recorded at five-minute intervals from the opening

of the betting window until one minute before post time. These interim observations allow us to

trace the real-time evolution of market expectations and to examine whether, and in what ways, the

1A comprehensive review of empirical work estimating risk preferences using field data is provided by Barseghyan,
Molinari, O’Donoghue and Teitelbaum (2018), who highlight betting markets as a key setting for identifying such
preferences from aggregate behavior. See also the surveys by Thaler and Ziemba (1988), Hausch and Ziemba (1995),
Ottaviani and Sørensen (2008), and Jullien and Salanié (2008). For experimental and theoretical perspectives, see
Plott, Wit and Yang (2003), Koessler, Noussair and Ziegelmeyer (2012), Kajii and Watanabe (2017), and Gillen,
Plott and Shum (2017).
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trajectory of odds—particularly in the final stages of betting—affects subsequent realized returns.

In parimutuel betting markets, final odds and interim odds are calculated in the same way—

based on the cumulative distribution of wagers—but they serve markedly different functions. Final

odds are determined at the close of betting and directly govern payout calculations, thereby playing

a dual role as both a summary of aggregate market expectations and as payoff-determining prices.

Interim odds, by contrast, are snapshots of cumulative bets at intermediate points. Although they

may capture evolving expectations, they do not enter the payout rule and thus lack a direct pricing

function. Because of this, conventional models of betting markets have typically abstracted from

interim odds and focused exclusively on final odds.

The contribution of our study is to move beyond this convention by testing whether expected

returns depend not only on final odds but also on the trajectory of odds movements during the

betting period. To this end, we extend the standard regression framework used to detect the

FLB—where realized returns are regressed on final odds—by incorporating measures of interim

odds dynamics as explanatory variables. This approach enables us to ask whether horses with

identical final odds but distinct interim trajectories yield systematically different average returns,

thereby providing a direct empirical test of path dependence. Exploiting the five-minute update

structure of the JRA data, we construct multiple indicators of odds changes and identify the phases

of the betting process in which path dependence is most pronounced.

Our main findings reveal a systematic relationship between expected returns and odds move-

ments in the final five minutes before post time. In particular, realized returns are negatively

related to last-minute changes in odds: horses experiencing a late surge in popularity—manifested

as declining odds—tend to yield higher realized returns than those with identical final odds but

no such movement. This pattern suggests that late-stage odds dynamics reflect the behavior of

informed bettors who strategically place their wagers at the very end of the betting period in

response to private signals not yet incorporated into market prices (Ottaviani and Sørensen 2006,

2009).2

Another key finding concerns how incorporating late-stage odds dynamics alters the conven-

tional relationship between final odds and realized returns. Once these dynamics are taken into

account, the negative correlation typically interpreted as the FLB becomes markedly weaker. This

attenuation indicates that final odds alone are not sufficient statistics, and that static models

relying exclusively on them may yield biased parameter estimates of risk preferences or belief

2The systematic relationship we document between expected returns and last-minute odds movements should
be interpreted as an in-sample correlation rather than evidence of ex-ante predictability or arbitrage opportunities.
Bettors cannot revise their actions based on final odds, nor can they submit limit orders contingent on them.
Indeed, when we consider forecasts based only on odds information available up to five minutes before post time,
we find that the level of odds at that point is negatively related to realized returns—similar to the well-known
correlation between final odds and returns—whereas earlier odds changes are largely unrelated to returns, with
only minor exceptions. Hence, while the FLB attributable to risk preferences or probability perceptions remains
present, ex-ante predictability based on interim odds changes is very limited.

3



distributions.

These findings carry two key implications. First, we call into question the validity of static

empirical strategies for inferring market expectations or bettor preferences, as our results show that

expected returns depend not only on the level of final odds but also on last-minute odds movements.

Second, we provide empirical support for the information-based explanation of the FLB developed

by Ottaviani and Sørensen (2009), who demonstrate that the bias can also arise when last-minute

betting occurs simultaneously and prevents the full incorporation of private information. In such

settings, final odds cannot fully aggregate information and contain a “surprise” component to

which bettors cannot respond, generating return differentials that static pricing models fail to

capture.

Related Literature A wide range of mechanisms has been proposed to explain the FLB, which

can be broadly grouped into two categories. The first attributes the bias to risk preferences under

rational expectations, emphasizing either risk-loving behavior (Weitzman 1965) or systematic risk

misperceptions (Jullien and Salanié 2000, Bradley 2003, Snowberg and Wolfers 2010). A recent

contribution by Chiappori et al. (2019) develops and estimates a comprehensive structural model

that incorporates heterogeneity in risk preferences, accommodating both expected utility and non-

expected utility representations. The second category focuses on heterogeneity in information

under the assumption of risk neutrality, attributing the FLB to differences in bettors’ subjective

beliefs. For instance, Ali (1977) shows that heterogeneous beliefs alone can generate the FLB

even when all agents are risk-neutral, and Gandhi and Serrano-Padial (2015) employ a demand-

estimation approach to document the coexistence of informed bettors and noise traders. While

these studies provide valuable insights, they are grounded in static frameworks that implicitly

assume bettors can condition their decisions on final odds.

A notable exception—and the study most closely related to ours—is Ottaviani and Sørensen

(2009). They analyze parimutuel betting markets with homogeneous bettors who possess imperfect

information and can condition their actions on private signals but not on final odds. Their key

insight is that in the Bayesian-Nash equilibrium with last-minute simultaneous betting that does

not condition on final odds, the surprise revealed by the final odds remains unincorporated into

bets. As a result, final odds fail to fully aggregate information, and the FLB arises.3 Ottaviani

and Sørensen (2010) extend this framework and propose indirect empirical tests that rely solely

on final odds. By contrast, our study provides more direct evidence on the last-minute surprise

hypothesis by exploiting rich intra-race data on odds trajectories observed throughout the betting

period.

In addition, several studies emphasize how institutional features of betting markets shape their

informational efficiency. Smith, Paton and Williams (2006) show that market efficiency depends on

3For an overview of information-based explanations, see Bergemann and Ottaviani (2021).
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the institutional setting by analyzing Betfair online betting in UK horse racing, where bettors post

and accept wagers in a manner that effectively allows contingent price offers, in sharp contrast

to parimutuel systems. Importantly, they find that the FLB, well documented in bookmaker

markets, is much weaker in this exchange environment. Subsequent work by Franck, Verbeek and

Nüesch (2010) provides further evidence from European football betting markets, showing that

the mechanisms by which odds are set and adjusted affect the degree of efficiency. These studies

highlight that the efficiency of betting markets depends not only on bettors’ preferences or beliefs,

but also on the institutional design governing how odds are determined.

Structure of the Study The remainder of the study is organized as follows. Section 2 introduces

the dataset and documents key empirical facts. Section 3 sets out the econometric framework.

Section 4 reports the main findings, while Section 5 provides additional analyses and discussion.

Finally, Section 6 concludes.

2 Data

This section begins by outlining the institutional background of horse racing in Japan, and then de-

scribes the dataset used in our empirical analysis. We conclude by presenting several key empirical

patterns that motivate our investigation and guide the subsequent econometric analysis.

2.1 Institutional Details

In Japan, horse racing is organized by the JRA and the National Association of Racing (NAR). The

JRA oversees racing events at ten major racecourses (e.g., Tokyo, Nakayama, Kyoto, and Hanshin)

in metropolitan areas, while the NAR is responsible for local races held throughout the country.

Races at the ten major tracks administered by the JRA are referred to as Chuo Keiba (meaning

“central horse racing”), comprising roughly 3,400 races annually. As one of the largest and most

profitable racing organizations worldwide, the JRA maintains a fully integrated infrastructure and,

in recent years, has reported annual betting turnover exceeding 2.8 trillion yen (approximately 19

billion USD at an exchange rate of 145 yen to the dollar as of 2024).4

This study focuses exclusively on JRA races, for which past race records are systematically

archived in a uniform format. All JRA races are conducted under a parimutuel betting system,

in which odds are dynamically updated according to the distribution of wagers and final payouts

are determined by the closing odds. Races are held primarily on weekends and Japanese national

holidays. Betting for Saturday races opens at 6:30 p.m. on the preceding Friday, and for Sunday

4Beyond race administration, the JRA also manages training centers, equine development facilities, and a pro-
fessional school for jockeys and stable personnel.
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races at 7:30 p.m. on the preceding Saturday. Wagering closes roughly one minute before post

time (see Supplementary Appendix A.1 for further details), and tickets can be purchased in units

of 100 JPY (approximately 0.69 USD).

Our analysis focuses on the win (tanshō) pool, where the JRA deducts 20% from the total pool

to cover taxes and operating expenses. Odds—defined as the gross payout per 1 JPY bet—are

given by

Ri =
(1− 0.2)

∑
i∈I Wi

Wi

=
0.8

si
, (1)

where Wi denotes the total amount wagered on horse i, I is the set of competing horses, and

si ≡ Wi/
∑

i∈I Wi represents the share of total bets placed on horse i.5 By construction, odds

are lower for horses that attract more wagers (favorites) and higher for those that attract fewer

(longshots).

It should be noted that equation (1) applies to both final and interim odds. Interim odds are

calculated from the cumulative wagers placed up to a given point in time and thus provide an

intermediate aggregation of bettors’ actions during the betting period. While interim odds do not

determine payouts, they offer valuable information on the real-time evolution of market sentiment.

The JRA also operates a supplemental payout scheme known as “JRA Plus 10.” If the payout

for a winning 100-JPY ticket would otherwise be exactly 100 JPY (i.e., odds of 1.0), it is increased

to 110 JPY—unless the bonus would exceed the pool surplus, in which case the payout reverts

to 100 JPY. Accordingly, for horses with final odds of 1.0, the realized odds may be either 1.0 or

1.1 depending on race-specific conditions. To avoid ambiguity in return calculations, we exclude

from our sample any race in which at least one horse had final odds of exactly 1.0. Such cases are

extremely rare, representing only 0.0007% of horses in our 20-year dataset.

Finally, if a horse is withdrawn or declared a non-starter after betting has commenced, all

tickets involving that horse are refunded. However, posted odds are not adjusted in real time to

reflect these changes, which may generate discrepancies between observed odds and actual market

expectations. To ensure data integrity, we exclude from our analysis all races in which any horse

was withdrawn after betting had opened.

2.2 Horse-Race-Time-Level Panel Dataset

Our empirical analysis relies on data from the JRA-VAN database, a licensed service that provides

structured records from the JRA. For each race, the dataset contains rich metadata including race-

track, date and time, race classification, track condition, course distance, and horse-level attributes

(e.g., name, age, sex, and jockey). It also reports both final and interim win odds, race outcomes

5In Japan, odds in horse racing are quoted as gross payouts inclusive of the original stake. For example, odds
of 2.5 imply that a 1 JPY bet yields 2.5 JPY if successful. This corresponds to fractional odds of 3/2, yielding 1.5
JPY in net profit. In general, JRA odds Ri correspond to fractional odds of Ri − 1.
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(finishing positions and official times), and aggregate betting volumes. Descriptive statistics for

the sample are presented in Supplementary Appendix A.1.

A distinctive feature of the JRA-VAN platform is the availability of high-frequency interim

odds. In addition to the final odds published at the close of wagering, the JRA releases interim

odds at roughly five-minute intervals throughout the betting window, until one minute before post

time. These updates make it possible to trace the evolution of market expectations in real time.

Interim odds are obtained via automated polling of the JRA’s official servers. Although betting

occurs continuously, the precise timing of odds updates can vary slightly across races. To ensure

comparability and temporal consistency, we harmonize the data into fixed five-minute intervals.

This yields a balanced horse-race-time-level panel dataset that captures the dynamics of odds

formation over the entire betting period. The structure of this dataset enables us to test whether

movements in interim odds provide incremental predictive content for realized returns, conditional

on final odds.

2.3 Basic Facts

We begin by documenting several key empirical patterns regarding the dynamics of odds and their

relationship with realized returns.

Realized Returns and Final Odds Figure 1 illustrates the relationship between realized re-

turns and final odds. Horses are grouped into bins based on their odds using fixed-width intervals

(e.g., [1, 11), [11, 21), . . .). For each group g ∈ G, we compute the average realized gross return as

1

|Ig|
∑
i∈Ig

1{wini=1}R
∗
i ,

where Ig denotes the set of horses in group g, and R∗
i represents the final odds for horse i, inclusive

of the original stake. Losing horses yield zero returns and therefore do not contribute to the group

average.

The figure reveals a clear negative relationship between final odds and realized returns: horses

with lower final odds (favorites) yield higher average returns, whereas those with higher odds

(longshots) generate lower returns. This pattern is consistent with the well-established FLB,

whereby bets on longshots systematically underperform those on favorites.

Temporal Distribution of Bets Figure 2 shows the temporal distribution of wagering activity

across races. For each race, the cumulative amount wagered by post time is normalized to one,

and the figure plots the proportion of total bets placed at each point prior to post time. The

data reveal a pronounced acceleration in betting as post time nears: only about 25% of wagers
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Figure 1: Odds versus Returns

Notes: The solid black line plots the average realized gross return for each odds group g ∈ G, calculated as
1

|Ig|
∑

i∈Ig
1{wini=1}R

∗
i , where R∗

i denotes the final odds for horse i. Odds are grouped into intervals of width 10,

and bins with fewer than 1,000 observations are excluded, following Jullien and Salanié (2000).

are placed by 20 minutes before post time, whereas nearly half are submitted within the final five

minutes. This pattern underscores the substantial clustering of wagers in the closing moments of

the betting window.6

Odds Changes and Outcomes We next examine how interim odds dynamics relate to the

association between final odds and realized returns. Figure 3 presents a series of comparisons

based on whether a horse’s odds increased or decreased during specific time intervals prior to post

time. Panel (a) focuses on the final five-minute window and classifies horses according to whether

their odds rose or fell during this period. The results show that, conditional on similar final odds,

horses whose odds declined—suggesting a late surge in betting interest—consistently yield higher

6This concentration of late wagering parallels the “sniping” behavior observed in online auctions such as eBay,
where participants strategically delay bids until the final moments (Roth and Ockenfels 2002, Ockenfels and Roth
2006, Bajari and Hortacsu 2004). In the context of parimutuel betting, Ottaviani and Sørensen (2006) develop a
theoretical framework in which informed bettors postpone their wagers to avoid revealing private information to
the market. Such strategic delay results in a clustering of bets immediately before post time.
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Figure 2: Temporal Distribution of Wagering Activity Before Post Time

Notes: The figure plots the share of cumulative wagers placed at five-minute intervals from 60 minutes to 5 minutes
before post time, and at one-minute intervals during the final five minutes. For each race, total betting volume by
post time is normalized to one. The solid black line indicates the median share at each time point, and the shaded
region denotes the 95% interval across races.

average realized returns than those whose odds increased.

Panels (b)–(f) extend the analysis to earlier five-minute windows: 5 to 10, 10 to 15, 15 to 20,

20 to 25, and 25 to 30 minutes prior to post time. Unlike the final interval, odds movements in

these earlier periods display no systematic association with subsequent returns, suggesting that

early fluctuations carry little predictive content.

Taken together, these findings indicate that interim odds dynamics are informative about ex-

pected returns only in the final stages of the betting period. This pattern underscores the distinct

role of late-stage wagering activity in shaping final prices and highlights the importance of ac-

counting for path dependence in empirical analyses of betting markets. In the next section, we

formalize these insights within an econometric framework to quantify the magnitude of these dy-

namic relationships.
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Figure 3: Expected Return versus Interim Odds Changes

(a) -5 to 0 (final) (b) -10 to -5

(c) -15 to -10 (d) -20 to -15

(e) -25 to -20 (f) -30 to -25

Note: The horizontal axis represents final odds, grouped into bins of width 10. Panels (a)–(f) compare average
realized returns for horses whose odds increased versus decreased during specified five-minute intervals prior to post
time. Panel (a) covers the final interval (0 to 5 minutes before post time), while Panels (b)–(f) examine earlier
intervals: 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 30 minutes before post time, respectively. Within each panel,
the two lines plot average realized returns for horses with increasing and decreasing odds during the corresponding
interval. Shaded areas denote 95% confidence intervals. Following Jullien and Salanié (2000), bins are excluded if
either subgroup contains fewer than 1,000 observations.
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3 Econometric Strategy

The preceding section documented that odds movements in the final five minutes before post

time—the window in which nearly half of all bets are placed—are systematically related to race

outcomes. This section develops a formal econometric framework to quantify the presence and

strength of such path dependence in expected returns.

We begin with the baseline regression model:

1{wini=1}R
∗
i = α + βR∗

i + δOddsChangei + γ R∗
i ×OddsChangei + εi,

where R∗
i denotes the final odds for horse i; OddsChangei is a variable (or vector of variables)

summarizing the trajectory of interim odds; εi is a mean-zero idiosyncratic error term. The

dependent variable equals the gross return to a 1 JPY bet on horse i: R∗
i if the horse wins and

zero otherwise. The conditional expectation is therefore

E[1{wini=1}R
∗
i | R∗

i ,OddsChangei] = α + βR∗
i + δOddsChangei + γ R∗

i ×OddsChangei,

where E[· | X] denotes the expectation conditional on covariates X.

This specification highlights the three parameters of interest. The intercept, α, represents the

baseline expected return in the absence of variation in odds, while β traces how expected returns

vary with the level of final odds, thus testing for the conventional FLB. The coefficient δ isolates

the correlation between expected returns and the odds trajectory, conditional on the final odds

level, thereby capturing whether interim odds contain predictive information beyond final odds.

Finally, γ examines whether this correlation itself varies systematically with the magnitude of final

odds, providing a test for heterogeneity in path dependence across the odds distribution.

Under the null hypothesis of full-information rational expectations and risk neutrality, final odds

fully incorporate all available information, rendering bettors indifferent across horses. Accordingly,

neither the level nor the trajectory of odds should systematically affect expected returns. Formally,

this null corresponds to β = δ = γ = 0, with the intercept α = 0.8 capturing the 20% takeout rate

imposed under the JRA parimutuel system. Thus, the expected gross return from a 1 JPY bet is

uniformly 0.8, independent of both the magnitude and the evolution of odds.

4 Results

Table 1 reports the coefficient estimates from the regression model. Column (1) shows the results

from a restricted specification that excludes path dependence (δ = γ = 0) and includes only final

odds as a regressor. In this model, the coefficient β captures the relationship between final odds

and expected returns. The estimate, β = −0.0016, is statistically significant at the 1% level,
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Table 1: Estimation Results: Winning Odds

(1) (2) (3) (4) (5)

Constant 0.8338 0.8452 0.8443 0.8435 0.8423
(0.0074) (0.0080) (0.0082) (0.0082) (0.0082)

R∗
i -0.0016 -0.0012 -0.0012 -0.0013 -0.0014

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
∆Ri,[−5,0]

Ri,−5
-0.3559

(0.0381)
∆Ri,[−10,0]

Ri,−10
-0.1674

(0.0250)
∆Ri,[−15,0]

Ri,−15
-0.1052

(0.0210)
∆Ri,[−20,0]

Ri,−20
-0.0702

(0.0176)

R∗
i ×

∆Ri,[−5,0]

Ri,−5
0.0002

(0.0003)

R∗
i ×

∆Ri,[−10,0]

Ri,−10
0.0000

(0.0002)

R∗
i ×

∆Ri,[−15,0]

Ri,−15
0.0001

(0.0001)

R∗
i ×

∆Ri,[−20,0]

Ri,−20
0.0001

(0.0001)

Num.Obs. 894127 894127 894127 894127 894127
R2 0.001 0.001 0.001 0.001 0.001
R2 Adj. 0.001 0.001 0.001 0.001 0.001

Notes: This table reports OLS estimates of the coefficients from the regression:

1{wini=1}R
∗
i = α+ βR∗

i + δOddsChangei + γ R∗
i ×OddsChangei + εi.

The variable ∆Ri,[−τ,0]/Ri,−τ ≡ (R∗
i −Ri,−τ )/Ri,−τ represents the rate of change in odds over the final τ minutes

before post time.

indicating a robust negative association. Economically, a one-unit increase in final odds reduces

expected gross returns by 0.0016 JPY per 1 JPY bet, equivalent to 0.16 JPY for a standard 100

JPY wager—the minimum betting unit in the JRA system. This result rejects the benchmark of

risk-neutral rational expectations and provides evidence consistent with the FLB.

Columns (2)–(5) introduce alternative specifications that incorporate measures of odds tra-

jectories to test for path dependence. These models include δ and γ as additional parameters,
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allowing expected returns to vary not only with final odds but also with how those odds evolved.

Column (2) focuses on the rate of odds change during the final five minutes before post time,

defined as ∆Ri,[−5,0]/Ri,−5 ≡ (R∗
i − Ri,−5)/Ri,−5, where Ri,−τ denotes the interim odds for horse i

observed τ > 0 minutes before post time. The estimated regression is

1{wini=1}R
∗
i = α + βR∗

i + δ
∆Ri,[−5,0]

Ri,−5

+ γ R∗
i ×

∆Ri,[−5,0]

Ri,−5

+ εi.

The estimates from Column (2) show a statistically significant association between late-stage

odds movements and expected returns. The coefficient on the odds-change term is negative and

significant (δ = −0.3559), indicating that horses whose odds decline in the final five minutes

tend to yield systematically higher expected returns, conditional on their final odds. By contrast,

the interaction term is small and statistically insignificant (γ = 0.0002), suggesting that this

relationship does not vary systematically with the level of final odds.

Notably, once late-stage odds movements are accounted for, the coefficient on final odds de-

creases in magnitude from β = −0.0016 in Column (1) to β = −0.0012 in Column (2) while

remaining statistically significant. This attenuation implies that part of the negative association

previously attributed to final odds is captured by the dynamics of late betting, underscoring the

predictive content of interim odds beyond their final level.7

Columns (3)–(5) extend the analysis by considering longer windows prior to post time: 10, 15,

and 20 minutes, respectively. For each window, the odds change rate is defined as ∆Ri,[−τ,0]/Ri,−τ ≡
(R∗

i −Ri,−τ )/Ri,−τ , where Ri,−τ denotes the interim odds observed τ minutes before post time. The

estimated coefficients on these odds-change variables are smaller in magnitude for longer windows,

suggesting that odds movements occurring closer to post time carry stronger predictive content

for expected returns, whereas earlier movements are less systematically related to outcomes.

In summary, the regression results demonstrate that expected returns are systematically related

not only to the level of final odds but also to the trajectory of interim odds, particularly in the

final minutes before post time. While the conventional specification in Column (1) detects the

favorite-longshot bias, incorporating measures of late-stage odds movements in Columns (2)–(5)

reveals additional predictive content that attenuates the role of final odds.8 These findings provide

direct evidence of path dependence in betting markets, indicating that final odds alone do not

fully capture the information embedded in wagering activity. These results are consistent with the

information-based explanation of Ottaviani and Sørensen (2009), which attributes the FLB to the

7These results should not be interpreted as evidence of ex-ante return predictability. The correlations between
odds changes and realized returns reflect only ex-post associations, because bettors cannot react after observing
the final odds nor place contingent orders based on them. A more detailed discussion of the potential for ex-ante
return predictability is provided in Supplementary Appendix A.2.

8Our results are robust to the inclusion of race fixed effects. See the robustness check in Supplementary Ap-
pendix A.4.

13



behavior of informed bettors who strategically place their wagers at the very end of the betting

period in response to private signals. In this setting, final odds embed a “surprise” component

that generates predictable return differentials, even under risk neutrality.

5 Discussion

The preceding section provided empirical evidence consistent with the information-based explana-

tion of the FLB proposed by Ottaviani and Sørensen (2009), using interim odds data to uncover

dynamic patterns in betting behavior. In this section, we further assess the validity of this ac-

count by testing additional theoretical predictions derived from the generalized model of Ottaviani

and Sørensen (2010). Their framework extends the stylized setting of Ottaviani and Sørensen

(2009) to incorporate broader aspects of market structure. By examining whether these extended

predictions are borne out in our data, we evaluate the robustness and explanatory scope of the

information-based interpretation of the FLB.

Racetrack Conditions Within the information-based framework, the magnitude of the FLB de-

pends in part on how precisely private information predicts race outcomes. Ottaviani and Sørensen

(2010) emphasize that environmental conditions—particularly racetrack quality—affect this pre-

cision. Under adverse conditions such as heavy rain or track degradation, increased uncertainty

reduces the informativeness of private signals. Consequently, the FLB is expected to weaken when

track conditions deteriorate, as bettors’ ability to exploit informational advantages becomes more

limited.

To test this hypothesis, we incorporate measures of racetrack condition—reported in the JRA

data on a four-level ordinal scale (Very Good, Moderate, Poor, Very Bad)—into our regression

framework. We pursue two empirical strategies.

First, we introduce an interaction between final odds and a dummy variable for Very Bad

conditions in the expected return regression:

1{wini=1}R
∗
i = α + βR∗

i + βcondition R
∗
i × 1{condition=V ery Bad} + εi.

As reported in Column (1) of Table 2, the coefficient βcondition is positive and statistically significant,

implying that the negative association between final odds and realized returns is significantly

weaker under poor track conditions. This result is consistent with the theoretical prediction that

adverse environments dilute the informational advantage of bettors.

Second, we replace the binary variable with an ordinal measure Z ∈ {1, 2, 3, 4}, corresponding
to Very Good, Moderate, Poor, and Very Bad conditions, respectively. This specification allows us

to test whether the FLB declines progressively as track quality worsens. Column (2) of Table 2
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Table 2: Additional Tests of the Information-Based Model’s Predictions

(1) (2) (3) (4)

R∗
i -0.001712 -0.001955 -0.001580 -0.000110

(0.000102) (0.000179) (0.000100) (0.000008)
R∗

i×1(Racetrack Condition = Very Bad) 0.000504
(0.000221)

R∗
i×(Racetrack Condition Poorness) 0.000266

(0.000125)
R∗

i×(Num. of Wagers) 0.000001 -0.000001
(0.000080) (0.000001)

Odds Data W W W Q
Num.Obs. 894127 894127 893824 1315425
R2 0.001 0.001 0.001 0.000
R2 Adj. 0.001 0.001 0.001 0.000

Notes: W = winning odds, Q = quinella odds. The number of wagers is computed from the number of tickets sold.
Racetrack condition is categorized into four levels by increasing surface moisture: 1 = Very Good, 2 = Moderate,
3 = Poor, 4 = Very Bad. Column (2) includes the race track condition levels as numerical variables.

confirms that the bias becomes less pronounced with deteriorating conditions, in line with model

predictions.

Bettor Population Size Ottaviani and Sørensen (2010) predict that the number of partici-

pating bettors—particularly informed ones—affects the magnitude of the FLB. As the number of

informed bettors increases, so does the aggregate volume of private information. If this information

is not fully incorporated due to the simultaneity of last-minute betting, the FLB should become

more pronounced.

We test this hypothesis by examining whether the magnitude of the bias varies systematically

with the total amount wagered in each race, which serves as a proxy for market participation.

Column (3) of Table 2 reports the estimates. Contrary to the theoretical prediction, we find no

statistically significant evidence that the FLB intensifies in races with greater participation; the

estimated interaction term is close to zero.

Two factors may account for this null result. First, most JRA races already attract a large

number of participants, so marginal increases may add little additional informational content to

the market. Second, in high-profile races such as graded stakes, higher participation often reflects

the presence of casual or infrequent bettors, whose decisions may be less informed or more noise-

driven than those of regular bettors. Consequently, the effective informational content of additional

wagers may be diluted, weakening the link between participation size and the strength of the FLB.
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Number of Possible Outcomes: Quinella Bets Finally, Ottaviani and Sørensen (2010)

theorize that the magnitude of the FLB depends on the complexity of the betting instrument,

particularly the number of possible outcomes. As the number of potential outcomes increases

relative to the number of bets placed, the informational content embedded in final odds diminishes.

Consequently, the negative association between final odds and realized returns should weaken, and

in some cases may even reverse the typical FLB pattern.

Column (4) examines odds in the quinella (umaren) market, in which bettors select two horses

and the ticket pays if both finish first and second in any order.9 The results show that, although

the negative association remains, its slope is considerably smaller than in the win market (see also

Supplementary Appendix A.3), consistent with the prediction of Ottaviani and Sørensen (2010).

Summary Overall, our findings provide mixed support for the predictions of the information-

based framework. We find strong evidence that unfavorable racetrack conditions attenuate the

FLB and that more complex betting instruments are associated with a weaker bias. By contrast,

we do not find empirical confirmation that greater numbers of bettors amplify the FLB, suggesting

that market participation may not translate directly into greater informational content.

6 Conclusion

This study examined the dynamics of information aggregation in parimutuel betting markets

by analyzing interim odds throughout the betting period. Conventional static betting market

models assume that bettors condition their choices on final odds, and prior research has therefore

focused on the static relationship between final odds and realized returns. Our evidence, however,

demonstrates that odds trajectories—especially those in the final minutes before post time—play

a critical role in shaping expected returns.

Our analysis shows that horses experiencing last-minute declines in win odds, indicative of

rising popularity, consistently deliver higher average returns than horses with identical final odds

whose odds increased over the same interval. These late-stage dynamics attenuate the negative

correlation between final odds and realized returns that is conventionally interpreted as the FLB.

These findings carry several implications. First, they suggest that late-stage odds movements

reflect the behavior of informed bettors who strategically place their wagers at the very end of

the betting period in response to private signals. Second, they indicate that final odds may not

fully aggregate information, implying that static models relying exclusively on them may yield

biased parameter estimates of risk preferences or belief distributions. More broadly, our results

challenge the sufficiency of final odds assumed in conventional static betting market models and

9Unlike exacta bets, which require the correct order of finish, quinella bets only require that the two selected
horses occupy the top two positions, regardless of order.
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provide complementary support for information-based explanations of the FLB (Ottaviani and

Sørensen 2009, 2010). They also highlight how market design features—such as the absence of

limit orders—shape information aggregation, and point to future research on whether similar path

dependence arises in other market environments.
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A Supplementary Appendix

A.1 Data Details

Betting Channels and User Segmentation in JRA Races Wagers on JRA races can be

placed through a variety of channels, including online platforms and physical betting venues. The

primary online channel is Internet Programmed Automatic Transmission (IPAT), which requires

prior registration and linkage to a domestic bank account. Another online option, JRA Direct,

operates via credit card and allows same-day registration and betting, though it is accessible only

via desktop browsers and does not support mobile devices. In addition to these online channels,

bets may also be placed in person at JRA-operated racecourses and WINS (off-track betting

facilities).

Although the JRA does not publish micro-level data on individual bettors, industry reports

and publicly available aggregate statistics indicate that online channels—namely IPAT and JRA

Direct—collectively account for over 70% of total wagering turnover. Betting at physical locations

tends to be dominated by older bettors and is often characterized by larger per-bet amounts. In

contrast, online platforms attract a broader demographic and are typically associated with smaller

but more frequent wagers.

The cutoff times for purchasing JRA betting tickets vary depending on the purchase method:

1. JRA IPAT: Up to 1 minute before the race starts.

2. At the racecourse or WINS (off-track betting facilities): Up to 2 minutes before the race

starts.

3. JRA Direct and telephone betting: Up to 5 minutes before the race starts.

Summary Statistics Table A.1 reports summary statistics for winning odds data from 2004 to

2023 at both the horse-race level and the horse-race-time level. Panels (a) and (b) present basic

characteristics of races and individual horses, respectively. On average, horses are 3.6 years old,

each race features an average field size of 14.19 starters, and the mean final win odds is 66.8 with

a standard deviation of 96.35, reflecting the wide dispersion in ex ante market expectations.

Objective Winning Probability and Final Odds Figure A.1 depicts the relationship between

final odds and (ex-post) winning probabilities in the JRA betting market. It illustrates a clear

inverse relationship between final odds and realized win probabilities: horses with lower odds

(i.e., favorites) exhibit substantially higher empirical win rates, while those with higher odds (i.e.,

longshots) show markedly lower chances of winning.

A.2 Ex-ante Return Predictability

The results in Section 4 document a significant association between realized returns, 1{wini=1}R
∗
i ,

and changes in odds from interim to final values in the last few minutes before the race. For clarity,
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Table A.1: Summary Statistics of Winning Odds Data

(a) Race level

N Mean SD Min. Max.

Num Horses 63372 14.19 2.61 4.00 18.00
Distance 63372 1663.91 444.68 1000.00 4260.00
Num. of Wagers (Mil) 63351 0.40 0.73 0.01 42.63
Racetrack Quality 63372 3.57 0.80 1.00 4.00

(b) Horse-race level

N Mean SD Min. Max.

Horse Age 895090 3.65 1.35 2.00 13.00
Realized Rank 895090 7.81 4.43 1.00 18.00
Final Odds 895090 66.80 96.35 1.10 999.90
Realized Finish Time 895090 102.05 29.92 53.80 326.40

Note: The winning odds data cover all centrally administered races in Japan from 2004 to 2023.

Figure A.1: Winning Probability: Winning Odds

Note: The database also includes pool-level betting volumes, and horse-level and race-level detailed attributes.
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these results should not be taken as evidence of ex-ante return predictability. Rather, it should be

recognized that the correlations we document reflect only an ex-post association, because bettors

cannot react after observing the final odds nor place contingent orders based on them.

As a complementary exercise, Table A.2 reports estimates from an alternative predictive model

that relies only on information available at least τ minutes before post time. For each reference

point τ ∈ {5, 10, 15, . . . }, we examine whether the rates of change in odds over the preceding 20

minutes contain predictive power for realized returns. The 20-minute window is divided into four

consecutive five-minute intervals. For example, in Column (1), where the reference point is five

minutes before post time, the regressors are the rates of change in odds between 5-10, 10-15, 15-20,

and 20-25 minutes before the race. Column (2) shifts the reference point to ten minutes before

post time, so the regressors correspond to 10-15, 15-20, 20-25, and 25-30 minutes before the race,

and so forth. In this way, each column uses odds movements observed strictly before the chosen

horizon, and the coefficients indicate whether such interim dynamics help predict realized returns.

The results show that, while there exist some cases where interim odds changes are statistically

significant predictors of realized returns (e.g., the odds change between 5-10 minutes before the

race when evaluated at τ = 5, or the odds change between 15-20 minutes before the race when

evaluated at τ = 15), the overall evidence of ex-ante predictability is limited. At τ = 5, last-minute

rushes of betting activity may already be captured in the 5-10 minute interval because wagering

at off-track betting facilities closes two minutes before post time. Apart from this specific case,

significant coefficients appear only sporadically across horizons and intervals, and the magnitudes

are generally small.

A.3 Quinella Odds Analysis

Table A.3 reports summary statistics for quinella odds from 2019 to 2023, with the shorter sample

period chosen for computational feasibility (in contrast, the win odds data in Table A.1 cover

2004-2023). Compared with the win odds, two differences stand out. First, Panel (a) shows that

the total amount wagered in quinella bets is larger on average (1.16 million JPY per race) than in

win bets (0.40 million JPY). Yet, because the quinella market involves far more betting objects—

around 92 horse pairs per race compared with about 14 horses—the amount wagered per pair is

much smaller than the amount wagered per horse in win betting. Panel (b) shows that quinella

odds are substantially larger, averaging over 500 for horse-pair-time observations, whereas final

win odds average only about 67.

Figure A.2 presents an analogous relationship between quinella odds and realized returns.

Unlike the monotonic pattern observed in win odds in Figure 1, the relationship for quinella bets

appears less systematic, suggesting that the classic FLB is more muted in exotic bets such as

quinella.

Figure A.3 examines whether changes in interim quinella odds affect realized returns, mirroring

the analysis for win bets in Figure 3. Across all panels, we compare average returns conditional

on final odds for bets whose interim odds either increased or decreased over successive five-minute

intervals before post time.
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Table A.2: Ex-ante Return Predictability Test

(1) (2) (3) (4) (5) (6) (7) (8)

∆Ri,[−10,−5]

Ri,−10
-0.39089 -0.39135

(0.04370) (0.04384)
∆Ri,[−15,−10]

Ri,−15
0.00396 -0.12663 0.00372

(0.06727) (0.06571) (0.06734)
∆Ri,[−20,−15]

Ri,−20
-0.10140 -0.20276 -0.22235 -0.10168

(0.06103) (0.06002) (0.05916) (0.06110)
∆Ri,[−25,−20]

Ri,−25
0.14328 0.07026 0.05684 0.01032 0.14271

(0.06859) (0.06827) (0.06793) (0.06674) (0.06880)
∆Ri,[−30,−25]

Ri,−30
-0.04467 -0.05235 -0.07030 -0.06952 -0.00052

(0.08625) (0.08626) (0.08612) (0.08576) (0.08654)
∆Ri,[−35,−30]

Ri,−35
-0.00658 -0.01197 -0.01234 -0.01760 0.02524

(0.09943) (0.09945) (0.09942) (0.09939) (0.09967)
∆Ri,[−40,−35]

Ri,−40
-0.11015 -0.11091 -0.11071 -0.11129 -0.07098

(0.10646) (0.10651) (0.10678) (0.10673) (0.10692)
∆Ri,[−45,−40]

Ri,−45
0.04237 0.04020 0.03973 0.07338

(0.10675) (0.10693) (0.10690) (0.10700)
∆Ri,[−50,−45]

Ri,−50
0.04449 0.04425 0.05731

(0.10100) (0.10099) (0.10101)

Num.Obs. 894127 894127 894127 894127 894124 894053 894053 894053
R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R2 Adj. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: The regressions test whether the rates of change in odds over the 20 minutes preceding a given horizon
contain predictive power for realized returns. Each column corresponds to a reference horizon τ ∈ {5, 10, 15, . . . }
minutes before post time, with regressors corresponding to four consecutive five-minute intervals. All regressions
include a constant term, which is not reported in the table.

Table A.3: Summary Statistics of Quinella Odds Data

(a) Race level

N Mean SD Min. Max.

Num Horse Pairs 14289 92.06 34.72 10.00 153.00
Num. of Wagers (Mil) 14289 1.16 2.31 0.14 67.37

(b) Horse-pair-race level

N Mean SD Min. Max.

Final Odds 1315425 513.33 791.98 1.10 74093.80

Note: The quinella odds data cover all centrally administered races in Japan from 2019 to 2023.
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Figure A.2: Quinella Odds versus Realized Returns

Notes: The average realized gross return for each group g ∈ G on the vertical axis is given by 1
|Ig|

∑
i∈Ig

1{wini=1}R
∗
i ,

where Ig denotes the set of horses in group g, and R∗
i represents the final odds for horse i. Odds are binned in

intervals of width 20, and bins with fewer than 1,000 observations are excluded from the plot, as in Jullien and
Salanié (2000).

As in the win bet case, we observe a divergence between the “increase” and “decrease” groups,

with odds declines associated with higher realized returns and odds increases with lower returns.

This pattern becomes clearly visible only in the final five minutes (Panel (a)), consistent with the

pattern observed in win odds. Overall, while the classic FLB appears more muted in quinella bets,

such bets nevertheless exhibit a similar form of late-stage predictability as win markets.

A.4 Robustness Analysis: Race Fixed Effects

We assess the robustness of our baseline regression results by incorporating race fixed effects

and clustering standard errors at the race level. The inclusion of race fixed effects accounts for

unobserved race-specific heterogeneity that may affect realized returns. A key motivation for this

specification arises from the institutional detail that posted odds in JRA races are rounded to

the first decimal place. As a result, the implied takeout rate—computed from observed odds—

may deviate slightly from the official 20% due to rounding error. These small but systematic
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Figure A.3: Expected Return vs Interim Quinella Odds Changes

(a) -5 to 0 (final) (b) -10 to -5

(c) -15 to -10 (d) -20 to -15

(e) -25 to -20 (f) -30 to -25

Note: The horizontal axis represents final quinella odds, grouped into bins of width 10. Panels (a)–(f) compare
average realized returns for horses whose odds increased versus decreased during specified five-minute intervals prior
to post time. Panel (a) covers the final interval (0 to 5 minutes before post time), while Panels (b)–(f) examine
earlier intervals: 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 30 minutes before post time, respectively. Within
each panel, the two lines plot average realized returns for horses with increasing and decreasing odds during the
corresponding interval. Shaded areas denote 95% confidence intervals. Following Jullien and Salanié (2000), bins
are excluded if either subgroup contains fewer than 1,000 observations.

discrepancies introduce mechanical variation in expected returns across races.

Furthermore, we cluster standard errors at the race level to allow for arbitrary correlation
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Table A.4: Estimation Results: Quinella Odds

(1) (2) (3) (4) (5)

Constant 0.69829 0.77976 0.80470 0.80601 0.80031
(0.01584) (0.01711) (0.01778) (0.01802) (0.01820)

R∗
i -0.00011 -0.00012 -0.00013 -0.00012 -0.00012

(0.00001) (0.00002) (0.00002) (0.00002) (0.00002)
∆Ri,[−5,0]

Ri,−5
-1.40233

(0.08494)
∆Ri,[−10,0]

Ri,−10
-0.97162

(0.06676)
∆Ri,[−15,0]

Ri,−15
-0.79996

(0.05799)
∆Ri,[−20,0]

Ri,−20
-0.59334

(0.04879)

R∗
i ×

∆Ri,[−5,0]

Ri,−5
0.00023

(0.00005)

R∗
i ×

∆Ri,[−10,0]

Ri,−10
0.00018

(0.00003)

R∗
i ×

∆Ri,[−15,0]

Ri,−15
0.00013

(0.00002)

R∗
i ×

∆Ri,[−20,0]

Ri,−20
0.00010

(0.00002)

Num.Obs. 1315425 1315425 1315425 1315425 1315425
R2 0.000 0.000 0.000 0.000 0.000
R2 Adj. 0.000 0.000 0.000 0.000 0.000

Notes: This table reports OLS estimates of the coefficients from the regression:

1{wini=1}R
∗
i = α+ βR∗

i + δOddsChangei + γ R∗
i ×OddsChangei + εi.

The variable ∆Ri,[−τ,0]/Ri,−τ ≡ (R∗
i − Ri,−τ )/Ri,−τ denotes the rate of change in odds over the final τ minutes

before post time.

of residuals within each race. Clustering by race ensures valid inference under these forms of

within-race dependence.

Estimation results incorporating these robustness checks are reported in Tables A.5. The results

remain quantitatively and statistically robust, with the key coefficients of interest remaining highly

significant and of similar magnitude to the baseline estimates.
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Table A.5: Estimation Results with Race Fixed Effects: Winning Odds

(1) (2) (3) (4) (5)

R∗
i -0.00158 -0.00093 -0.00100 -0.00121 -0.00125

(1.0122e-04) (0.00020) (0.00022) (0.00021) (0.00021)
∆Ri,[−5,0]

Ri,−5
-0.35756

(0.03946)
∆Ri,[−10,0]

Ri,−10
-0.16842

(0.02844)
∆Ri,[−15,0]

Ri,−15
-0.10831

(0.02453)
∆Ri,[−20,0]

Ri,−20
-0.07297

(0.02048)

R∗
i ×

∆Ri,[−5,0]

Ri,−5
-0.00030

(0.00036)

R∗
i ×

∆Ri,[−10,0]

Ri,−10
-0.00023

(0.00029)

R∗
i ×

∆Ri,[−15,0]

Ri,−15
-0.00007

(0.00025)

R∗
i ×

∆Ri,[−20,0]

Ri,−20
-0.00008

(0.00020)

Num.Obs. 894127 894127 894127 894127 894127
R2 0.054 0.054 0.054 0.054 0.054
R2 Adj. -0.018 -0.018 -0.018 -0.018 -0.018

Notes: This table reports OLS estimates of the coefficients from the regression:

1{wini=1}R
∗
i = αj(i) + βR∗

i + δOddsChangei + γ R∗
i ×OddsChangei +Race Fixed Effect + εi.

The variable ∆Ri,[−τ,0]/Ri,−τ ≡ (R∗
i − Ri,−τ )/Ri,−τ denotes the rate of change in odds over the final τ minutes

before post time.
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